SOS4, a pyridoxal kinase gene, is required for root hair development in Arabidopsis.

نویسندگان

  • Huazhong Shi
  • Jian-Kang Zhu
چکیده

Root hair development in plants is controlled by many genetic, hormonal, and environmental factors. A number of genes have been shown to be important for root hair formation. Arabidopsis salt overly sensitive 4 mutants were originally identified by screening for NaCl-hypersensitive growth. The SOS4 (Salt Overly Sensitive 4) gene was recently isolated by map-based cloning and shown to encode a pyridoxal (PL) kinase involved in the production of PL-5-phosphate, which is an important cofactor for various enzymes and a ligand for certain ion transporters. The root growth of sos4 mutants is slower than that of the wild type. Microscopic observations revealed that sos4 mutants do not have root hairs in the maturation zone. The sos4 mutations block the initiation of most root hairs, and impair the tip growth of those that are initiated. The root hairless phenotype of sos4 mutants was complemented by the wild-type SOS4 gene. SOS4 promoter-beta-glucuronidase analysis showed that SOS4 is expressed in the root hair and other hair-like structures. Consistent with SOS4 function as a PL kinase, in vitro application of pyridoxine and pyridoxamine, but not PL, partially rescued the root hair defect in sos4 mutants. 1-Aminocyclopropane-1-carboxylic acid and 2,4-dichlorophenoxyacetic acid treatments promoted root hair formation in both wild-type and sos4 plants, indicating that genetically SOS4 functions upstream of ethylene and auxin in root hair development. The possible role of SOS4 in ethylene and auxin biosynthesis is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance.

Salt stress is a major environmental factor influencing plant growth and development. To identify salt tolerance determinants, a genetic screen for salt overly sensitive (sos) mutants was performed in Arabidopsis. We present here the characterization of sos4 mutants and the positional cloning of the SOS4 gene. sos4 mutant plants are hypersensitive to Na(+), K(+), and Li(+) ions. Under NaCl stre...

متن کامل

Primary root growth, tissue expression and co-expression analysis of a receptor kinase mutant in Arabidopsis

There is no functional annotation for the majority of the several hundreds of receptor-like kinases in plants. A direct way of inferring the function of these proteins is to study the phenotype that results from loss of function mutants such as T-DNA mutant lines. In this research a function (phenotype) to At2g37050 gene that encodes a receptor like kinase in Arabidopsis T-DNA line was...

متن کامل

Vitamer Levels, Stress Response, Enzyme Activity, and Gene Regulation of Arabidopsis Lines Mutant in the Pyridoxine/Pyridoxamine 5#-Phosphate Oxidase (PDX3) and the Pyridoxal Kinase (SOS4) Genes Involved in the Vitamin B6 Salvage Pathway 1[W][OA]

PDX3 and SALT OVERLY SENSITIVE4 (SOS4), encoding pyridoxine/pyridoxamine 5#-phosphate oxidase and pyridoxal kinase, respectively, are the only known genes involved in the salvage pathway of pyridoxal 5#-phosphate in plants. In this study, we determined the phenotype, stress responses, vitamer levels, and regulation of the vitamin B6 pathway genes in Arabidopsis (Arabidopsis thaliana) plants mut...

متن کامل

The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana.

Root hairs are extensions of root epidermal cells and a model system for directional tip growth of plant cells. A previously uncharacterized Arabidopsis thaliana phosphatidylinositol-4-phosphate 5-kinase gene (PIP5K3) was identified and found to be expressed in the root cortex, epidermal cells, and root hairs. Recombinant PIP5K3 protein was catalytically active and converted phosphatidylinosito...

متن کامل

OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice.

Root hairs are long tubular outgrowths that form on the surface of specialized epidermal cells. They are required for nutrient and water uptake and interact with the soil microflora. Here we show that the Oryza sativa cellulose synthase-like D1 (OsCSLD1) gene is required for root hair development, as rice (Oryza sativa) mutants that lack OsCSLD1 function develop abnormal root hairs. In these mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 129 2  شماره 

صفحات  -

تاریخ انتشار 2002